

IBM Research

Performance evaluation of cancelable biometrics

Nalini K Ratha* Exploratory Computer Vision Group IBM T. J. Watson Research Center Hawthorne, NY 10532

*Joint work with members of biometrics research team

Cancelable Biometrics

- Intentional repeatable distortion
 - Generates a similar signal each time for the same user
- Compromised scenario:
 - a new distortion creates a new biometrics
- Comparison scenario:
 - different distortions for different accounts
- Backwards compatibility
 - Representation is not changed.

© New Yorker Magazine (Charles Addams)

Cancelability requirements of the transform

 The intrinsic strength (individuality) of the biometric should not be reduced after transformation. (Constraint on FAR)

$$D(x_1, x_2) > t \Rightarrow D(T(x_1), T(x_2)) > t$$

The transformation should be tolerant to intra-user variation (Constraint on FRR)

$$D(x_1, x_2) < t \Rightarrow D(T(x_1), T(x_2)) < t$$

The original should not match with the transform,

$$D(x,T(x)) > t$$

4. Different transforms of the same user should not match with each other $D(T_1(x), T_2(x)) > t$

Registration based

Challenges

Feature Domain Transformation

How does it affect accuracy?

- Results reported in
 - "Cancelable biometrics: A case study in Fingerprints", ICPR 06
 - "Generating cancelable fingerprint templates",IEEE PAMI

Registration free

Enrollment

Verification

Cancelable methods

- Can we avoid storing the original patch signatures?
- •Ways to transform/hide the feature vector
 - •Encryption representation too unstable for encryption
 - Polynomial transformation
 - •Random projection- fits well with NDP distance

Polynomial transformation

Preferred: Ortho normal projections

Cancelability (2)

Each patch can be used to produce multiple transforms

→ Cancelability (3)

- Original match among themselves
 Transforms match among themselves
 Transform does not match with original

Cancelability (4)

- Score more than 0.5 is a mismatch
- Different Transforms don't match with each other

Empirical Results (1)

Patch based verification

 Performance is less than geometry based matchers (62% GAR at 0.01% FAR)

Cancelabilility

 Complete separation (100% GAR,0% FAR) achieved by having separate transforms for separate individuals

Diversity of key space

 Complete separation (100% GAR,0% FAR) achieved for separate (188) transforms of the same individual.

Non invertiblity

 Complete separation (100% GAR,0% FAR) achieved for non-invertible construction as well

- Perfect performance because uses entropy from key also
- If everyone uses the same key performance will not change because distances are preserved

Increasing security: Two factor transformation

- The current construction is invertible
 - If we have the projecting matrix B, and the transform $T(x) = B^T x$

$$x = BT(x) = BB^{T}x$$
, can be recovered

- Can we increase security?
- Two factor transformation
 - The projection matrix B is constructed using two orthonormal matrices U,V

$$B = UV^T$$

$$UU^T = U^T U = VV^T = V^T V = I$$

$$BB^{T} = (UV^{T})VU^{T} = U(V^{T}V)U^{T} = I$$

U,V are obtained by performing SVD on a random matrix $R = USV^T$

S is not recorded anywhere in the system.

U, V do not leak information about each other

- U and V can be separately stored separately (e.g. split between user and application?)
- Symmetric key, public key comparison

More security: Non-invertibility

 We can make the construction non-invertible by introducing some non-linearity
 Define,

$$T(x) = \begin{cases} 1 & \text{if } B^{T}x > 0, (B = UV^{T}) \\ 0 & \text{otherwise} \end{cases}$$

- Thus, even if U, V, T(x) are known, it is impossible to recover x from T(x)
- Advantages:
 - The construction is non-invertible
- Disadvantages
 - Brute force attack is easier. (More pre-images of B^Tx produce the same sign)

Score distributions for invertible and non-invertible construction

Invariant features

- Independent triangle features
 - The sides
- Dependent triangle feature
 - Height at largest side
- Fingerprint features
 - Minutiae angles with respect to triangle

Triangles can be enumerated

Enrolment

Verification

Steps in building a cancelable iris system

- Segmentation
- Feature extraction
- Cancelable techniques •

Method 1: GRAY COMBO

- template based row shift and combination
 - Step 1: for each row shift circularly:

- Step 2: combine two rows together to get a new one:
 - Intensity +, -
 - One row can be used more than once
 - Easy methods: odd+even, fold like a mirror

Combine rows 1, 3 to the new 1st row Combine rows 2, 8 to the new 2nd row Combine rows 4, 6 to the new 3rd row Combine rows 5, 7 to the new 4th row

Method 2: BIN COMBO

- code based row shift and combination
 - Step 1: for each row shift circularly:

- Step 2: combine two rows together to get a new one:
 - Binary XOR, or NXOR
 - One row can be used more than once
 - Easy methods: odd+even, fold like a mirror

Combine rows 1, 3 to the new 1st row Combine rows 2, 8 to the new 2nd row Combine rows 4, 6 to the new 3rd row Combine rows 5, 7 to the new 4th row

Method 3: GRAY SALT

- template based salty noise
 - Just plus a unique pattern --- random noise, random pattern or random synthetic iris texture
 - Generate new code according to the new texture

Method 4: BIN SALT

- code based salty noise
 - Just plus a unique binary pattern --- random noise , random pattern or random synthetic iris code

Matcher

- Assume head tilt is not heavy
- Matching algorithm need to be modified:

Key performance metrics

- Accuracy
 - How do the error rates change?
 - Same transform vs. different transform
- Transform space
 - How many transforms are possible?
 - Brute force non-invertible strength of the transform
- Backward compatibility
- Impact on speed

Thank you